Brownfield

February 8, 2017

By John Perkins

U.S. ethanol production is holding near record levels.

The U.S. Energy Information Administration says last week’s average was 1.055 million barrels per day, slightly less than the previous week’s all-time high of 1.061 million, but still above an average of a million barrels a week for the 15th week in a row.

Corn supplies are ample and the industry is expecting solid demand, despite uncertainties about Trump Administration policies towards renewable fuels and a slowdown in demand from China, which is trying to support its domestic industry at the expense of U.S. ethanol.

The high rate of production is also pushing stocks higher, with supplies at 22.085 million barrels, over 22 million for the first time since the week ending April 29th, 2016.

Read the original story: Ethanol Production Tops a Million Barrels for 15th Week in a Row

Renewable Fuels Association

February 7, 2017

By Ann Lewis

After experiencing two months of unprecedented volumes, U.S. ethanol exports pitched downward 20% at the close of 2016, with 98.0 million gallons (mg) shipped out, according to government data released today. Brazil and Canada were the top destinations in December, receiving 42.5 mg (43%) and 27.3 mg (28%) respectively. Peru (6.1 mg), Nigeria (6.0 mg), the Philippines (3.7 mg), and South Korea (3.6 mg) were other leading importers of U.S. ethanol. In calendar year 2016, American ethanol producers exported 1.05 billion gallons—up 25% from 2015 and the second-highest annual total on record. Two-thirds of all shipments were sold to The Big Three—Brazil (26%), Canada (25%) and China (17%)—with remaining quantities dispersed among 75 other countries.

Denatured fuel ethanol exports totaled 34.9 mg in December, down 12% from the prior month and resting lower than recent averages. At 25.2 mg, Canada was once again the leading importer of denatured product with 72% of the market. Brazil increased its purchases to 6.5 mg (19%), as did Peru (3.1 mg), but China bowed out completely. December sales of 54.2 mg in undenatured fuel ethanol fell 31% from the prior month’s record-breaking high as Brazil scaled back to 36.0 mg, although still maintaining its foothold in market share (66%). The Philippines (3.7 mg), Peru (3.0 mg) and Nigeria (2.7 mg) were other top spots for undenatured fuel exports.

Sales of undenatured ethanol for non-fuel use returned to hefty levels, up 140% to 3.4 mg, as South Korea (2.7 mg) and Colombia (534,620 gallons) purchased their largest monthly volumes to-date. December sales of 5.5 mg in denatured ethanol for non-fuel use regained 31% over the prior month, shipped primarily to Nigeria (3.3 mg) and Canada (2.0 mg).

December was absent of any fuel ethanol imports—the third month in a row and the fourth time in 2016. As a result, the United States saw an average of less than 3 mg per month enter its borders the entire year, for a total of 33.7 mg and the second lowest level on record. Likewise, net exports have gained a new threshold.

Trade sanctions were likely responsible for much of the late-year deterioration in U.S. DDG export market and reshuffling of top customers. Mexico took over as the new leader in December with 161,165 metric tons (mt), despite an 18% decrease from prior month volumes. South Korea opened its doors to more U.S. DDG (up 27% to 96,573 mt), as did Turkey (up 35% to 93,669 mt) and Thailand (up 5% to 86,706 mt). China’s imposition of anti-dumping and countervailing duties against U.S. DDGS continued to erode that market, such that less than 60,000 mt entered the country in December. Similarly, Vietnam’s new phytosanitary/fumigation requirements reduced U.S. exports to less than one-tenth the November shipments. For the full calendar year, China did end up as the top market, receiving 2.4 million mt, or 21%, of the 11.48 million total U.S. DDG exports. Mexico was the No. 2 market at 1.9 million mt (17%), while Vietnam (1.2 million mt), South Korea (923,709 mt), and Turkey (789,613 mt) rounded out the top 5. The remaining third of all exports were scooped up by 45 other countries across the globe.

The Renewable Fuels Association released a new statistical report today to provide details on top export destinations, shifts in the marketplace, import volumes, the value of exports, and other key data regarding U.S. ethanol and co-products trade in 2016.

Read the original story: Ethanol and DDGS Exports Cap Off 2016 with Strong December Volumes

Friday, 03 February 2017 14:49

Hopkins Express Minnoco

1120 7th St. South
Hopkins MN 55343
E15, E30, E85
1120 7th Street South
Hopkins,Minnesota
United States 55343


Thursday, 02 February 2017 11:00

Ethanol Production Continues to Set Records

Hoosier Ag Today

February 1, 2017

By Gary Truitt

According to EIA data analyzed by the Renewable Fuels Association, ethanol production averaged 1.061 million barrels per day (b/d)—or 44.56 million gallons daily. That is up 10,000 b/d from the week before and a new record. It is the 14th week in a row with production above 1 million b/d. The four-week average for ethanol production stood at an unprecedented 1.054 million b/d for an annualized rate of 16.16 billion gallonsStocks of ethanol stood at 21.9 million barrels. That is a 0.7% increase from last week.

Imports of ethanol were zero b/d for the 23rd straight week. Gasoline demand for the week averaged 349.0 million gallons (8.310 million barrels) daily. Refiner/blender input of ethanol averaged 837,000 b/d, meaning gasoline delivered to the market contained an average of 10.07% ethanol.

Expressed as a percentage of daily gasoline demand, daily ethanol production was 12.77%.

Read the original story: Ethanol Production Continues to Set Records

Ethanol Producer Magazine

January 31, 2017

By Edeniq Inc

Edeniq Inc., a leading cellulosic and biorefining technology company, and Archer Daniels Midland Co. recently announced that the U.S. EPA has approved Little Sioux Corn Processors’ registration of its 150 million gallon per year Marcus, Iowa, ethanol plant for cellulosic ethanol production. Under the terms of its license agreements with ADM and Little Sioux, Edeniq uses its Pathway Technology to measure the amount of cellulosic ethanol produced, and provides the required information to register for D3 cellulosic renewable identification numbers (RINs) with the EPA.

Little Sioux is the third plant to receive a cellulosic ethanol registration from the EPA after deploying Edeniq’s Pathway Technology. The plant uses ADM’s Clintozyme enzyme to convert lower value corn fiber, which is typically sold as a feed ingredient, into higher value fuel ethanol through an enzymatic process. Registered plants can access D3 RINS, which are worth over $2.50 per gallon in 2017.

“Our customers are at the forefront of cellulosic biofuel production in the United States,” said Brian Thome, president and CEO of Edeniq. “And thanks to the efforts by the EPA in their approval process, our customers are now receiving registration approvals in a shorter time frame, allowing them to generate value from our technology more quickly.”

“We have been able to demonstrate that ADM’s Clintozyme enzyme can provide improved economics and higher yields for ethanol producers, and we are pleased that Little Sioux is now able to take advantage of this technology,” said Del Cahill, general manager, BioAdvantaged Products at ADM.

Steve Roe, general manager of Little Sioux, stated, “We trialed ADM’s Clintozyme cellulase enzyme to increase our ethanol and corn oil yield. We saw positive overall corn to ethanol conversion rates, increased corn oil yields, lower btu’s per gallon, and decreased fouling of piping and evaporator equipment. When we accessed the Edeniq Pathway Technology through the license, Edeniq put the pieces together to allow us to produce D3 RINs, thereby increasing shareholder value.”

“Our team is adding resources to move plants through commercial validation trials and the EPA registration process as quickly as possible, as the current customer backlog has now grown to more than 15 plants,” said Cam Cast, chief operating officer of Edeniq. “These resources will also help us continue to offer the highest level of support to our existing customers, including Little Sioux. We would like to thank the EPA, Little Sioux and ADM teams for their ongoing partnership.”

Edeniq’s Pathway Technology is the lowest-cost solution for producing and measuring cellulosic ethanol from corn kernel fiber utilizing existing fermenters at corn ethanol plants and has produced up to 2.5 percent cellulosic ethanol, up to a 7 percent increase in overall ethanol yield, and additional corn oil recovery. Edeniq is the leader in developing analytical methods to quantify cellulosic ethanol co-produced with conventional ethanol. Edeniq’s EPA approved validation and turnkey registration process provide a solution for generating D3 RINs and other regulatory credits associated with cellulosic ethanol.

Read the original story: EPA Approves Little Sioux Corn Processors for Cellulosic Ethanol

Tuesday, 31 January 2017 15:29

Farmers Looking at On-Farm Ethanol Plants

Illinois Farmer Today

January 28, 2017

By Nat Williams

A handful of farmers are not just raising the crops that can be used as biofuels. They’re also working on producing the fuel itself.

A Minnesota-based company is in the developmental stage of offering small-scale production of ethanol and other end-products right on the farm. Mark Gaalswyk of Easy Energy Systems describes the process by using a popular toy as an analogy.

“It’s a Lego concept,” Gaalswyk told farmers at the Family Farms group annual winter conference here. “There are different parts of the process. If one part becomes obsolete, you can replace it with another part.”

The company manufactures modules that can be linked to build “micro biorefineries” right on the farm. Feedstocks include corn, grain sorghum, sugar beets and unharvested waste products, such as fruits and vegetables.

“Long term, there is a lot of interest all over the world,” Gaalswyk said.

Jess Daily, who farms in Indiana, is among cooperators working with the company to build a factory on the farm. He is looking at using grain sorghum to manufacture bio-energy as well as n-butanol, a product with numerous uses, including pharmaceuticals, food additives and industrial solvents.

The Daily family is growing sorghum on marginal soils where corn is not a good option. He was sold on the idea after inspecting working models at Easy Energy’s headquarters.

“We got to see the plant and got to see the dedication. We were completely blown away by their ability and engineering skills,” he said. “At the end of the day, these guys know farming. They have an interaction can relate to what you’re doing every day. I told my dad this is a great opportunity.”

Gaalswyk said the Indiana project has promise.

“We’re working very closely with Jess and Daily Farms,” he said. “Once we get all of this to the point of making sense and coming close to starting that first plant, the next family team will come along. We’re working with Iowa State, and we’re looking for other projects, perhaps this year.”

Gaalswyk said the company’s engineers are testing 47 different feedstocks to determine feasibility of manufacturing various end-products. One project involving the manufacture of n-butanol is being tested on the Iowa farm of Harry Stine, founder of Stine Seeds. He said another project is being tested with cooperation of the Koch brothers, billionaire entrepreneurs and owners of Koch Industries.

Easy Energy is also working with Iowa State University on cellulosic technology. The company will soon begin building initial modules that convert feedstocks into sugar water and then into n-butanol.

“There is long-term interest all over the world,” Gaalswyk said.

Not surprisingly, building an ethanol plant — even a small one — is not cheap. It can take an investment of $20 million. But sales manager Tom Gallagher pointed out that a farmer can raise the money by a combination of sources that includes grants and leveraged money.

“If you’re interested, we’ll work with you on a financial plan, Gallagher said, adding that federal grants may be tapped. “Some testing will be required. As soon as the financials and the feedstocks make sense, we’ll help you put a business plan together, if you like.”

Read the original story: Farmers Looking at On-Farm Ethanol Plants

Tuesday, 31 January 2017 09:12

Brooklyn Park Minnoco

7820 Lakeland Ave N,
Minneapolis, MN 55445
E15, E30, E85
7820 Lakeland Avenue North
Brooklyn Park ,Minnesota
United States 55445


Think Bioenergy

January 23, 2017

By Jesper Hedal Kløverpris

In December 2015, 196 nations made a pact known as the World Climate Agreement, with a goal of, “holding the increase in global average temperature to well below 2° Celsius above pre-industrial levels.” A key factor in whether we as a global community are able to meet that goal will be our ability to reduce CO2 and other GHG emissions.

The true cost of fossil fuels

Fossil fuels—coal, oil and natural gas—serve as the world’s primary source of energy. They make up approximately 80% of total energy consumption worldwide, and replacing them with cleaner energy sources is a difficult endeavor to say the least. However, continuing the use of fossil fuels will push us well beyond 2° above pre-industrial levels, which will cause devastating shifts in climates around the world, decimating coastal cities and island nations and causing irreparable harm to the planet’s delicate ecosystems. The U.S. alone emitted 6.87 billion metric tons of CO2 in 2014. If those environmental costs are factored into the price of fossil fuels, they suddenly become much more expensive.

Yet consumers most readily associate the cost of fossil fuels with the prices they pay at the pump; nearly 26% of the U.S.’s 6.87 billion metric tons of CO2 came from the transportation sector. Currently, fossil fuels account for 95% of U.S. transportation sector consumption. The lack of consideration for environmental costs is particularly alarming given that we’re already more than halfway to our 2° limit under the World Climate Agreement, and the fact that completely renewable energy is still years, if not decades, away.

One tool currently at our disposal, however, is bioethanol. Nowadays, ethanol is already replacing gasoline as an additive to the existing fuel mix.  But starch-based ethanol additionally produces a low-cost feed ingredient rich in energy, protein, and phosphorus as a co-product. Cellulosic ethanol, which is often co-produced with bioelectricity, biogas and biofertilizers, can be produced alongside starch-based ethanol.

Because of these applications, ethanol is already displacing a lot of gasoline today. In the years to come, though, ethanol could play an even bigger role, working in concert with other technologies to drastically reduce GHG emissions. Those technologies, such as 100% ethanol-fueled vehicles and bioenergy with carbon capture and storage, are showing promising perspectives. But we don’t have to just sit back and wait. We can still move the needle today by making better use of available ethanol technologies.

Cutting emissions with starch- and sugar-based ethanol

In the history of transportation fuels, the mass production—and, to an extent, use—of starch- and sugar-based ethanol is quite recent, but these fuels indicate there is hope for a more harmonious future between sustainable energy and the transportation industry.

Corn serves as the primary source of the world’s starch-based ethanol, and it’s no surprise that most of the corn comes from the farmlands of the U.S. Today, the GHG emissions from U.S. corn ethanol are roughly 55.7 kg CO2e/MMBtu or 53 g CO2e/MJ. This includes emissions from so-called indirect land use change (ILUC). Hence, the emission assessment is based on a so-called marginal or consequential approach. Taking a similar approach to gasoline production leads to emissions of 115 g CO2e/MJ. This means that the relative GHG saving in a marginal/consequential perspective for average U.S. ethanol is around 54%.

Brazil, the world’s second largest ethanol producer, derives the fuel from sugarcane. Emissions from sugarcane ethanol are, on average, 51% lower than average gasoline (~60% compared to marginal gasoline). Under the U.S.’s Renewable Fuels Standard (RFS), the Environmental Protection Agency (EPA) considers sugarcane ethanol an Advanced Renewable Fuel because it cuts CO2 emissions by more than 50% compared to average gasoline.

Creating fuel ethanol from plant matter

Producers around the world are also working on other forms of renewable fuel that will provide even higher GHG savings. Also known as cellulosic ethanol, these fuels take plant matter from cellulose and hemicellulose to make a sustainable fuel.

Unlike most starch- and sugar-based ethanol, biomass used to create cellulosic ethanol can be derived from residues and waste. Examples include municipal waste, by-products from agriculture, forestry, and processing industries as well as a number of different grasses. Using these feedstocks, the fuel produced can help to efficiently meet the EPA’s emission reduction goals.

And, innovation in the renewable fuel space is constantly progressing. DONG Energy announced the development of the world’s first full-scale bio plant that will convert unsorted household waste into biogas—a process made possible by enzymes that Novozymes will provide. Biorefineries—facilities that produce fuels, power, heat and value-added chemicals from biomass—are even producing biofertilizers from the same products that are yielding the fuel. Additionally, the bioelectricity from these facilities can help to balance power fluctuations due to wind and solar energy sources.

The future of bioenergy is exciting, to be sure. But our planet’s climate won’t wait indefinitely while we work to find the perfect energy source.

Read the original story: Fuel Ethanol’s Role in the Fight Against Climate Change

Digital Trends

October 22, 2016

By Jeff Zurschmeide

A couple of months ago, we ran a column on the effects of ethanol in gasoline. We didn’t think it would be terribly controversial, because we reported only what we could confirm from reputable sources (mostly the United States Department of Energy). The story sparked reader interest like a match in a pool of spilled gasoline. By the time the comments section quieted down, we’d been accused of shilling for the oil industry, the ethanol industry, the left wing, the right wing, and everything in between.

To address the valid questions and concerns raised by our readers, we’re wading back into the ethanol discussion.

For this article, Digital Trends spoke in-depth with Dr. Andrew Randolph, Technical Director for ECR Engines. Dr. Randolph holds a Ph.D. in Chemical Engineering from Northwestern University, with a specialty in the combustion properties of ethanol-gasoline blends. He’s been working with NASCAR since 1999 and started with ECR in 2008.

ECR Engines is a high-performance engine production, research, and development company located on the Richard Childress Racing campus in Welcome, North Carolina. ECR Engines have earned more than 250 victories, including twice at the Daytona 500 and three times at the Brickyard 400. ECR engines have won championships in the NASCAR Nationwide and Camping World Truck Series, and the ARCA Racing Series presented by Menards. NASCAR races on 15 percent ethanol and 85 percent gasoline fuel.

Your lawn mower is not like your car

One of the most common complaints about our last article was that we ignored the effect of ethanol on small engines such as lawn mowers, chainsaws, weed whackers, and the like. Well, this is the Cars section of Digital Trends, not Home & Garden — but we’ll roll with it. We asked Dr. Randolph why ethanol can have such different effects on small engines.

“There is a difference between cars and lawn mowers, weed whackers, chainsaws, and things like that,” he tells Digital Trends. “Cars have a sensor in the exhaust which always optimizes the relationship of gasoline to air such that you have a perfect mixture regardless of what kind of gasoline you use.”

An Oxygen or O2 sensor communicates with a modern car’s engine control unit computer, telling it how to adjust the fuel-air mixture to stay in balance. In contrast, a small engine uses the simplest carburetor possible, with a fixed air-fuel mixture.

“When you add ethanol to gasoline, the ethanol has oxygen in it, so it changes the optimum ratio of the amount of fuel to the amount of air,” Randolph says. “You have some of the oxygen constituents in the fuel itself. A car will adjust for that automatically but lawn mowers are not able to adjust the ratio of fuel to air based on ethanol in the fuel.”

One problem is that the small engine manufacturers typically design and certify their engines to run on pure gasoline without any ethanol content. But about 97 percent of the gasoline sold at public service stations in America contains 10 percent ethanol.

“If they were to certify all these [engines] using E10 as the certification fuel, then the jetting and the carburetors on those devices would be set up to work optimally with E10,” Randolph explains. “And then you wouldn’t have any problem with those devices either.”

As a final note on small engines, Randolph warns against using E85 fuel, but states that conventional E10 should not be a problem in most cases.

“If someone thinks they had a problem in their chainsaw or their lawn mower because they’re using E10, they very likely would have had those problems anyway,” Randolph says. “When you start getting into higher concentrations like E85, if you tried to put that into your lawn mower or your weed whacker, then you will start having problems because that’s outside of the range in which the device is intended to operate.”

What about classic cars?

Another question we got was how owners of classic cars can manage ethanol in gasoline. Like small engines, classic cars tend to use carburetors, which were not designed to use fuel containing ethanol, and carburetors lack a feedback loop to adjust fuel-air mixture in real time.

“It’s kind of a case-by-case basis,” Randolph says. “But once you get into the 1990s, auto manufacturers started realizing that alcohol was going to be coming in gasoline, and they made sure that all the materials in the fuel system would not have any kind of breakdown with exposure to ethanol. It varied by manufacturer and by engine whether the fuel system was susceptible to that, but certainly by the time you got to the turn of the 21st century, no fuel systems were manufactured with components that would have difficulty with alcohols. But there are some older cars that do [have problems].”

The best thing you can do with a classic car is replace any fuel hoses or fuel pumps that might be sensitive to ethanol with modern parts, and then have your classic properly tuned at a shop that can monitor the fuel-air mixture on a rolling dynamometer that simulates real-world driving. Alternately, if it is available in your area, you can seek out ethanol-free premium gasoline, although this fuel tends to cost more than conventional E10 gasoline.

The future of ethanol

Despite the efforts of ethanol opponents, Dr. Randolph believes that we will continue to have alcohol in our fuel, and that the amount of alcohol in gasoline is likely to rise.

“It’s largely driven by economics,” Randolph says. “The price of gasoline is dependent on the price of oil. On the other hand, the economy of ethanol in the United States is linked to the health of the corn crop. It’s linked more to weather than politics. Long term, ethanol is a much more stable commodity to rely upon, because you don’t have governments and wars that are going to put your supply at risk. Also, the dollars that you’re spending on ethanol are paid to U.S. farmers and U.S. infrastructure.”

Ethanol is also preferred as an oxygenating additive because it is less toxic than prior octane-boosting additives like tetraethyl lead and Methyl Tertiary Butyl Ether (MTBE).

“Ethanol is a biodegradable fuel additive, and it provides excellent octane in fuel,” Randolph points out. “As we move towards the future and higher-performing engines that have to get better fuel economy, octane has to go up. The question is, how do you get there? If you get there by adding aromatic hydrocarbons or MTBE or tetraethyl lead, those are all very effective octane increasers but in each case there’s something about them that has very serious adverse health consequences. From that standpoint, ethanol is something that you would expect to be increased as we move forward.”

In the end, arguments about lawn mowers and classic cars won’t move the needle nearly so much as the widespread desire to pay less at the pump.

“I think that longer term, we’ll see more ethanol in gasoline,” Randolph says. “I think consumers want whatever’s going to be cheapest at the pump. That’s the long-term driver. I think ethanol’s going to win.”

Thursday, 26 January 2017 15:37

Outlook 2017: Rapid Adoption of E15

Biofuels International

January 26, 2017

By Rachel Gantz

The industry experienced record demand for ethanol in 2016 and we expect that to continue into 2017. We expect ethanol demand to be driven by a host of factors, both domestically and abroad.

Thanks to Environmental Protection Agency (EPA) fully implementing the 2017 conventional biofuel renewable volume obligations (RVO) at its statutory 15 billion gallon level, domestic demand will continue to escalate and US refiners and blenders will increase their use of ethanol in blends like E15 and flex fuels like E30 and E85.

Obviously, this is good news for consumers, as more ethanol in the US fuel mix will further help reduce greenhouse gas emissions, boost octane, lower our dependence on foreign oil and lower prices at the pump.

We also expect US ethanol exports to continue to grow.

Some of the largest markets in 2016 were China, Brazil, Canada, Mexico and India, and with more countries around the world recognising the numerous benefits of ethanol, we expect US ethanol exports to expand further.

On the road with E15

We think octane will continue to be a big trend in 2017, as the global fuel market is short on octane and new automobiles are increasingly requiring or recommending the use of higher octane fuels.

We think automakers will embrace higher-octane petrol as a means of helping to meet more stringent fuel economy standards in the future. With a 113 octane rating, ethanol is the cleanest and lowest-cost high-octane fuel component in the marketplace.

We also think a major trend in 2017 will be more rapid adoption of E15. We saw great progress with E15 in 2016, as the United States Department of Agriculture (USDA) grant programme and an industry funded.

Prime the Pump effort helped fund infrastructure development. Now that hundreds of new stations have put in the pumps to dispense E15, we expect to start seeing E15 sales volumes take off.

With a new administration taking the helm and a new Congress, the ethanol industry will be intensifying its efforts to educate and inform policymakers about the many benefits of ethanol and the RFS. There is a tremendous amount of misinformation out there and a number of biofuel opponents are ramping up efforts to attack the RFS and our industry.

We can’t let them succeed and we can’t let them define who we are and what we do as an industry. It will be more important than ever in 2017 for everyone in our industry to work together to ensure our new leaders have a proper understanding of the enormous contributions we make to the nation’s economy, energy security and environment.

Stimulating meaningful dialogue

The industry’s biggest challenge is to continue to grow demand for ethanol in the face of more stringent fuel economy standards in the face of flagging public support for low-carbon programmes and unrelenting attacks from the oil industry. The industry will need to invest in new technology and more infrastructure to encourage higher level ethanol blends.

Thanks to USDA’s Biofuel Infrastructure Partnership funding and the industry-funded Prime the Pump programmes, retailers are expanding their offerings of E15 and other higher level blends, but a stable and strong RFS is needed to help meet growing demand for the biofuel. We also need to stimulate a meaningful dialogue with the auto industry about vehicle technology and higher octane fuels. Finally, the industry’s efforts to expand exports must continue.

The RFA will continue to lead the way when it comes to growing our industry.

What can you expect from us in 2017? A lot. We will ensure that a strong RFS is maintained, lead safety seminars on the proper handling of the fuel, issue world-class analysis on regulations that affect our industry, promote high octane fuels, boost expansion of retail infrastructure to allow more higher level ethanol blends, ensure the growth of second-generation biofuels and grow US ethanol exports.

The RFA remains committed to growing our industry through multiple avenues and we look forward to a thriving industry in years to come.

Read the original story: Outlook 2017: Rapid Adoption of E15